Integrated Real-Time Air Quality Monitoring Technology

  • Slamet Widodo PPET-LIPI Bandung


This paper describes a metal oxide nano gas sensor for environmental monitoring subsystem in real time, this gas sensor with a semiconductor type microelectromechanical system (MEMS) which consumes low power and is highly responsive made for environmental monitoring applications. This subsystem was developed using a gas sensor module, a Bluetooth module, and a personal digital assistant (PDA) telephone. The gas sensor module consists of a NO2 or CO gas sensor and a signal processing chip. The MEMS gas sensor consists of a micro heater, a sensing electrode, and a sensing material. Metal oxide nano powder is coated onto the substrate using a microheater and integrated into the gas sensor module. The change in resistance of metal oxide nano powders from exposure to oxidizing or deoxidizing gases is used as the principle mechanism of operation of this gas sensor. The variations detected in the gas sensor module are transferred to the PDA phone via the Bluetooth module. The results of this study indicate an air quality monitoring system to monitor carbon monoxide and nitrogen dioxide gas parameters.


[1] M. Sharifi and M. Okhovvat “Scate: A Scalable Time and Energy Aware Actor Task Allocation Algorithm in Wireless Sensor and Actor Networks,” ETRI J., vol. 34, no. 3, June 2012, pp. 330-340.
[2] European Environment Agency, “Air Pollution,” 2001 Report.
[3] J. Moon et al., “Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by SnO2 Coating,” ETRI J., vol. 31, no. 6, Dec. 2009, pp. 636-641.
[4] C.S. Moon et al., “Highly Sensitive and Fast Responding CO Sensor Using SnO2 Nanosheets,” Sensors Actuators B, vol. 131, no. 2, 2008, pp. 556-564.
[5] L. Zhao et al., “The Effect of Mutiwalled Carbon Nanotube Doping on the CO Gas Response of SnO2-based Nanomaterials,” Nanotechnol., vol. 18, no. 44, 2007, pp. 1-5.
[6] Widodo, Slamet., “Review Sensor Gas Berbasis Metal Oksida Semikonduktor Untuk Mendeteksi Gas Polutan Yang Selektif dan Sensitif”, Jurnal Techno-Socio Ekonomika, Vol. 12, No. 2, Oktober 2019. ISSN;1979-4835, Hal. 92-112.
[7] Widodo, Slamet., “Proses Pembuatan Divais Sensor Gas CO Berbasis Timah Oksida (SnO2) Dengan Teknologi Film Tebal”, Proseding Seminar Nasional Teknologi Industri Hijau 3, Vol. 2, No. 1, Desember 2020, Hal. 28-41.
[8] J. Kong et al., “Nanotube Molecular Wires as Chemical Sensors,” Sci., vol. 287, no. 5453, 2000, pp. 622-625.
[9] D. Zhang et al., “Detection of NO2 Down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices,” Nano Lett., vol. 4, no. 10, 2004, pp. 1919-1924.
[10] N. Yamazoe and K. Shimanoe, “Theory of Power Laws for Semiconductor Gas Sensors,” Sensors Actuators B, vol. 128, no. 2, 2008, pp. 566-573.
[11] J.K. Prades et al., “Ultralow Power Consumption Gas Sensors Based on Self-Heated Individual Nanowires,” Appl. Phys. Lett., vol. 93, no. 12, 2008, pp. 123110_1-123110_3.
[12] Q. Wan et al., “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors,” Appl. Phys. Lett., vol. 84, no. 18, 2004, pp. 3654-3656.
[13]Widodo, Slamet., “Teknologi Proses Pembuatan Divais Sensor Gas NO2 Dengan Lapisan Aktif In2O3”, Jurnal Alchemy Penelitian Kimia, Vol.10, No.1, Maret 2014, Hal. 69-86.
[14]Widodo, Slamet., Wiranto, G., “Perancangan dan Pembuatan Divais Sensor Gas CO Berbasis Indium Timah Oksida (ITO) Dengan Teknologi Lapisan Tipis”, JKTI, Vol.17, No.1, Juni 2015, Hal. 39-47.
[15]Widodo, Slamet., “Teknologi Sol Gel Pada Pembuatan Nano Kristalin Metal Oksida Untuk Aplikasi Sensor Gas”, Prosiding Seminar Nasional Rekayasa Kimia dan Proses, Jurusan Teknik Kimia UNDIP, Semarang, 2010, ISSN: 1411-4216, Hal. E-20-1 – E-20- 8.
[16]Widodo, Slamet., “Kajian Perkembangan Teknologi Sensor Gas Untuk Emisi Gas Buang Kendaraan Bermotor”, Jurnal Techno-Socio Ekonomika, Vol. 13, No. 1, April 2020. ISSN;1979-4835, e-ISSN: 2721-2335, Hal. 71-80.
[17] Widodo, Slamet., “Proses Pembuatan Nano Partikel Timah Oksida (SnO2) Dengan Metode Sel Gel Sebagai Bahan Aktif Pada Sensor Gas Polutan”, Proseding Seminar Nasional Teknologi Industri Hijau 3, Vol. 2, No. 1, Desember 2020, Hal. 42-48.
[18] M. Graf et al., “CMOS Microhotplate Sensor System for Operating Temperature up to 500oC,” Sensors Actuator B, vol. 117, no. 2, 2006, pp. 346-352.
[19] C. Hagleitner et al., “Smart Single-Chip Gas Sensor Microsystem,” Nature, vol. 414, 2001, pp. 293-296.
[20] S.Z. Ali et al., “High Temperature SOI CMOS Tungsten Micro-Heaters,” Proc. IEEE Conf. Sensors, 2006, pp. 847-850.
[21]S.E. Moon et al., “Low-Power-Consumption and High-Sensitivity NO2 Micro Gas Sensor Based on a Co-Planar Micro-Heater Fabricated by Using a CMOS-MEMS Process,” J. Korean Phys. Soc., vol. 56, no. 1, 2010, pp. 434-438.
[22] F. Udrea et al., “Three Technologies for a Smart Miniaturized Gas-Sensor: SOI CMOS, Micromachining and CNTs — Challenges and Performance,” Proc. 2007 IEEE Int. Electron Dev. Mtg. Tech. Dig., Washington, DC, Dec. 2007, pp. 831-834.
[23]S.E. Moon et al., “ High-Response and Low-Power-Consumption CO Micro Gas Sensor Based on Nano-powders and a Micro-heater,” J. Korean Phys. Soc., vol. 60, no. 2, 2012, pp. 235-239.
[24]Korean Ministry of Environment, “Air Pollution,” 2010 Report.
[25] N. Barsan, M. Schweizer-Berberich, and W. Gopel, “Fundamental and Practical Aspects in the Design of Nanoscaled SnO2 Gas Sensors: A Status Report,” J. Annal. Chem., vol. 365, 1999, pp. 287-304.
[26]J. Gardner and P.N. Bartlett, “Electronic Nose: Principles and Applications, New York: Oxford University Press, 1999.
[27]N. Barsan and U. Weimar, “Conduction Model of Metal Oxide Gas Sensors,” J. Electroceram., vol. 7, 2001, pp. 143-167.
[28] A. Kolmakov et al., “Detection of CO and O2 Using Tin Oxide NanoWire Sensors,” Adv. Mater., vol. 15, 2003, pp. 997-1000.
[29] Ginanjar, A., Sari, W. P., & Dwipriyoko, E. (2021). Perbandingan Kehandalan Operasi CRUD Menggunakan Perpaduan Spring dan MyBatis Framework serta Algoritma Cache Engine. Jurnal TIARSIE, 18(1), 11-18.
How to Cite
WIDODO, Slamet. Integrated Real-Time Air Quality Monitoring Technology. Jurnal TIARSIE, [S.l.], v. 18, n. 2, june 2021. ISSN 2623-2391. Available at: <>. Date accessed: 21 sep. 2021. doi: